Strouhal Number of Naturally-Oscillating Triangular and Circular Jets

S. K. Lee, P. V. Lanspeary and G. J. Nathan

School of Mechanical Engineering
The University of Adelaide, Adelaide, South Australia, 5005 AUSTRALIA

Abstract
A nozzle consisting of an abrupt expansion into a short open-ended tube can produce a naturally-excited oscillating-jet flow. The characteristics of the oscillating jet depend on jet-orifice to chamber expansion ratio \(D/d_1 \), chamber length-to-diameter ratio \(L/D \), and shape of the jet orifice. In experiments using water as a flow medium, air-bubble visualisation and signals from a pressure transducer show that a triangular-jet orifice produces aperiodic oscillation without spectral peak. In contrast, oscillation of the circular jet has clearly visible periodicity and the spectrum has a broad peak. The circular and triangular orifices produce completely different dependence of Strouhal number. Nathan et al. [8] found that the range of confinement geometries which produce continuous oscillation occurs at much smaller expansion ratios than in the FPJ. The spreading angle of flow from the OTJ nozzle is smaller than the spreading angle of the FPJ flow and it varies more gradually over a broad range of \(D/d_1 \) ratios. However for this study, where there is no disc, precession requires that \(D/d_1 \) be constrained within a narrow range and only variations in expansion ratio are likely to have a significant effect on the Strouhal number; i.e. \(St_1 \approx U(D/d_1, Re_1) \).

Introduction
Partially confining the flow from an orifice with an axisymmetric chamber can produce a naturally-excited oscillating-jet flow. In the initial studies with a circular orifice, Nathan et al. [8] found that the range of confinement geometries which produce an oscillating jet is quite narrow. The diameter-expansion ratio from orifice to chamber must exceed about five, \(D/d_1 \geq 5 \), and the length ratio of the chamber must be in the range \(2.6 \leq L/D \leq 2.8 \). A small lip of height \(h_2 \approx 0.1D \) is usually attached to the chamber exit. A device with these geometric parameters is patented as the fluidic-precessing-jet (FPJ) nozzle [6]. The frequency of jet oscillation \(f_p \) is known as the “precession frequency” because oscillation of the jet flow resembles the precession of a spinning gyroscope. Measurements and observations of the FPJ flow [8] show that the oscillation of the jet has a broad spectral peak.

The non-dimensional time-dependent Navier-Stokes equations;

\[
St_1 \frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_i} \left(\frac{\partial P}{\partial x_i} + \frac{1}{Re_1} \frac{\partial^2 u_i}{\partial x_i^2} \right) = 0,
\]

show that characteristic frequencies of FPJ oscillation should be expressed non-dimensionally as a Strouhal number, and that the characteristic Strouhal number is a function of Reynolds number. Nathan [7] and other FPJ researchers have defined Strouhal number \(St_1 \) and Reynolds number \(Re_1 \) in terms of inlet-flow velocity \(U_1 \) and orifice diameter \(d_1 \) so that \(St_1 = x_1/d_1, \quad U_1 = u_i/U_1, \quad \hat{P} = P/\rho U_1^2 \) and \(\hat{f} = f f_p \). Dimensional analysis shows that the Strouhal number also depends on parameters representing the chamber geometry and the inlet-orifice flow conditions. Mi and Nathan [5] show that, by placing a disc of diameter \(\approx 0.75D \) just inside the exit plane of the nozzle, oscillation is obtained over a wide range of \(L/D \) ratios. However for this study, where there is no disc, precession requires that \(L/D \) and \(D/d_1 \) be constrained within a narrow range and only variations in expansion ratio are likely to have a significant effect on the Strouhal number; i.e. \(St_1 \approx U(D/d_1, Re_1) \).

Mi et al. [6] found that the generation of large-scale oscillation does not require the inlet orifice to be circular. An equilateral triangular orifice (Figure 1(a)) can offer some advantages in comparison with the circular inlet of the FPJ nozzle. For example, one difficulty with the FPJ is that oscillation can spontaneously cease or can become intermittent. On the other hand, oscillation of the triangular jet is continuous and intermittency is not detected [4, 6]. Also, self-excited oscillation is obtained for expansion ratios smaller than the FPJ’s lower limit of \(D/d_1 \approx 5 \). As a consequence, the kinetic-energy loss of flow through the oscillating-triangular-jet (OTJ) nozzle is orders of magnitude lower than the kinetic-energy loss through the FPJ nozzle. In some applications this is beneficial because it either reduces the cost of pumping the flow by orders of magnitude, or it allows a corresponding reduction in the size of the nozzle and its supporting structure.

In a parametric study of the OTJ nozzle, Lee et al. [4] have verified that continuous oscillation occurs at much smaller expansion ratios than in the FPJ. The spreading angle of flow from the OTJ nozzle is smaller than the spreading angle of the FPJ flow and it varies more gradually over a broad range of \(L/D \) ratios and inlet-expansion ratios. This allows the designer of the OTJ nozzle to specify not only a lower driving pressure than is possible for the FPJ nozzle, but also allows the designer to select a preferred jet spreading angle.

This paper compares the precession rate and spectrum of the OTJ with new and earlier measurements of the FPJ.

Figure 1: The oscillating-triangular-jet (OTJ) nozzle and its flow field (greyscales are inverted).
Experimental Techniques

Characteristic frequencies of the OTJ oscillation are obtained by two different methods of signal analysis. In both cases the flow medium is water and signals are recorded from a backward-facing pressure probe placed in the region of flow reattachment inside the chamber (Figure 1). The results are obtained at inlet-orifice Reynolds numbers in the range 40,000 < $d_3 U_1 / \nu$ < 100,000, where d_3 is the diameter of a circle with the same area as the triangular orifice.

For the first method of analysis, the signal passes through a (4-pole Butterworth) low-pass filter and a comparator with adjustable threshold levels. Counting 0→1 transitions in the comparator output gives the oscillation rate. The comparator is calibrated by seeding the flow with air bubbles, directly observing the oscillation (which has characteristic rate of less than 1 Hz), and manually counting the individual oscillations for a period of 4 minutes (Figure 2).

For the second method of analysis, power spectra of the pressure signal are calculated by the so-called “maximum entropy method” (MEM). The maximum entropy method in statistical mechanics was first published by Jaynes [3] and was adapted for spectral estimation by Burg [1]. By definition, a power spectrum,

$$ P_x(f) = \int_{-\infty}^{+\infty} R_x(\tau) \cdot e^{-2\pi j f \tau} \, d\tau, $$

is the Fourier transform of the autocorrelation of the data, $R_x(\tau)$. In reality, only a subset of the autocorrelations is available from the experimental data. The MEM power spectrum is calculated in a way which maximises the uncertainty (or entropy) of the unavailable autocorrelations — it is obtained from the transfer function of an all-pole model of the data. The MEM has a number of advantages over the Welch [9] FFT method of spectral estimation. One of the most important is that all the spectral information is contained in just a few (in this case, five) numerical coefficients. The characteristic (or peak) frequencies in the spectrum are easily identified by converting the coefficients into “S-plane” poles. For this MEM, the signal was sampled for a duration equivalent to about 1000 oscillation events.

Table 1: Review of FPJ Strouhal-number measurements.

<table>
<thead>
<tr>
<th>Author(s) and year</th>
<th>Nozzle geometry</th>
<th>Re_1 ($= d_3 U_1 / \nu$)</th>
<th>St_1 ($= f_d d_3 / U_1$)</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathan [7]</td>
<td>4.3° $\sim 2.7^c$ 0.9</td>
<td>95k \rightarrow 270k 0.0020 \rightarrow 0.0026</td>
<td>Power spectrad</td>
<td></td>
</tr>
<tr>
<td>Nathan et al. [8]</td>
<td>9.1° $\sim 2.7^c$</td>
<td>48k \rightarrow 275k 0.0007 \rightarrow 0.0011</td>
<td>Direct observationb</td>
<td></td>
</tr>
<tr>
<td>Mi and Nathan [5]</td>
<td>5.3° $\sim 2.2^c$</td>
<td>4k \rightarrow 21k ~ 0.0014</td>
<td>Power spectrad</td>
<td></td>
</tr>
<tr>
<td>Wong [10]</td>
<td>5.1° $\sim 2.7^c$ 0.8</td>
<td>53k \rightarrow 134k 0.0016 \rightarrow 0.0017</td>
<td>Power spectrad</td>
<td></td>
</tr>
<tr>
<td>Hill et al. [2]</td>
<td>3.8° Long chamber</td>
<td>–</td>
<td>4.406\rightarrow 40.738 0.0048 \rightarrow 0.0061</td>
<td>Direct observation10</td>
</tr>
<tr>
<td></td>
<td>6.0° ≥ 3.0</td>
<td>–</td>
<td>7.046\rightarrow 21.077 ~ 0.0020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4° ≥ 3.0</td>
<td>–</td>
<td>15.451\rightarrow 31.646 0.0016 \rightarrow 0.0017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.8° 14.0°</td>
<td>–</td>
<td>40.738 ~ 0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.0°</td>
<td>–</td>
<td>7.046\rightarrow 56.538 0.0004 \rightarrow 0.0005</td>
<td></td>
</tr>
</tbody>
</table>

aOrifice plate bSmooth contraction cChamber includes a disc to prevent intermittency of oscillation dHot–wire signal (air); FFT spectral peak eDye visualisation (water) 10Particle–streak visualisation (water)
flows downstream of a sudden expansion into a very long chamber and has no easily identified characteristic frequency. Experiments show that, far downstream from the sudden-expansion, the reattached “jet” from the inlet fills the cross-section of the chamber and has no easily identified characteristic frequency.

Review of FPJ Precession-Frequency Measurements

Table 1 summarises a review of previous measurements. Variations in chamber geometry, Reynolds number, and experimental technique add to the difficulties of interpreting these data. However, a least-squares fit to a relevant subset of these FPJ data [5, 7, 8, 10] and the present FPJ data (Figure 3) produces

\[
St_1 = \frac{f_{OJ}d_1}{U_1} = 7.6 \times 10^{-3} \left(\frac{D}{d_1} - 1 \right)^{-1}, \quad 4.3 \leq \frac{D}{d_1} \leq 9.1, \tag{2}
\]

with r.m.s. error of 7%. These data are plotted in Figure 4 as diamonds (○, review data) and circles (○, present data). In another study, Hill et al. [2] have observed precession in the reattaching flow downstream of a sudden expansion into a very long chamber (\(L/D \to \infty\)). Hill’s precession frequencies, which are shown in Figure 4 as left-triangles (△), are different from the FPJ frequencies and fall on the curve

\[
St_1 = 27.7 \times 10^{-3} \left(\frac{D}{d_1} - 1 \right)^{-1.64}, \quad 3.8 \leq \frac{D}{d_1} \leq 14.0, \tag{3}
\]

with r.m.s. error of 5%. Hill’s particle-streak visualisation experiments show that, far downstream from the sudden-expansion, the reattached “jet” from the inlet fills the cross-section of the chamber and has no easily identified characteristic frequency.

The OTJ / FPJ nozzle dimensions used for the present study are given in Figure 3. The graph in Figure 3 suggests that the oscillation rate (\(St_1\)) has a weak “\(-0.3\)" power-law dependence on Reynolds number. For studying the effects of expansion ratio, Strouhal number is simply averaged over the range of Reynolds number, \(Re_1\). The variation due to Reynolds number is indicated in Figure 4 by the vertical error-bars. The straight-line of best fit to the OTJ data in Figure 4 is

\[
St_1 = \left[\frac{475}{D/d_1} - 1 \right] + 129 \times 10^{-6}, \quad 2.1 \leq \frac{D}{d_1} \leq 3.5, \tag{4}
\]

with r.m.s. error of 2%. The line of best fit for the OTJ data (Equation 4) and the curve of best fit for FPJ data (Equation 2) intersect at the minimum viable FPJ expansion ratio of \(D/d_1 \approx 4.8\).

Power Spectra

The units for \(P_s\), the power spectral density (PSD) of pressure signal, are [pressure] [frequency]⁻¹, and so, according to dimensional analysis, non-dimensional PSD should be written as

\[
\text{Non-dimensional PSD} = \frac{P_s}{q_1^2} \frac{df}{dSt_1} = \left(\frac{P_s}{\rho U_1^2} \right) \frac{dU_1}{\rho U_1^2 d_1} = \frac{4 P_s}{\rho U_1^2 d_1}, \tag{5}
\]

where \(q_1 = \frac{1}{2} \rho U_1^2\) is the dynamic pressure at the inlet-plane of the nozzle and \(df/dSt_1\) is the Jacobian for converting Strouhal number to frequency. The curve of best fit to the FPJ precession frequency (Equation 2) gives Strouhal number as a function of non-dimensional step height, \((D - d_1)/d_1\), and so it suggests that the Strouhal number itself should be defined in terms of step height:

\[
Sh_b = \frac{f h}{U_1} = \frac{St_1}{2} \left(\frac{D}{d_1} - 1 \right), \tag{6}
\]

where \(h = \frac{1}{2} (D - d_1)\). When expressed in terms of step-height Strouhal number, Equation 2 becomes a constant:

\[
Sh_b = 3.8 \times 10^{-3}, \quad 4.3 \leq \frac{D}{d_1} \leq 9.1. \tag{7}
\]
The signal from the OTJ is aperiodic and the power spectrum has no peak. Poles of MEM spectra from OTJ data fall into three widely separated groups at low, middle and high frequencies. The middle group of poles (0.002 $\lesssim St_1 \lesssim 0.003$) are near the FPJ oscillation frequency given by Equation 2. The low-frequency poles are scattered around the observed OTJ Strouhal numbers, which are shown as downward-pointing triangles (▽) in Figure 4. The high frequency poles are close to the filter cut-off frequency.

Conclusions

Frequency of the OTJ / FPJ flow are obtained from air-bubble visualisation (counting events) and power-spectra analysis of pressure measurements of the flow in the nozzle chamber. The low-expansion-ratio OTJ oscillation has a different frequency from that of the FPJ, is aperiodic and has no spectral peak. For the OTJ, the Strouhal number is proportional to the expansion ratio, and intersects at the FPJ rate at the minimum viable FPJ expansion ratio of about 4.8.

Acknowledgements

The support of the ARC and FCT is gratefully acknowledged. Special thanks to A/Prof. R. M. Kelso for proof reading this article and to Mr. G. Osborne for preparing the pressure probe.

References

